
Syntax of the intermediate representation

Origram

October 29, 2013

Abstract
Here is the description of the chosen syntax of the intermediate representation. First

we give the data structures needed to represent an origami. Then we precise the syntax
of the different functions one may call while building an origami.

1 Data structures
The two main structures that are needed are the points and the lines. A point is given
by its name, and a line by two points which are its extremities.

At the beginning, we work on a regular n-gon. The points are called V1...Vn. The
lines are V1V2...Vn−1Vn.

For more informations about the internal definition and manipulation of these struc-
tures, and of other important structures, see the document Data structures of the inter-
mediate representation.

2 Folding functions
There are seven basic folding functions, corresponding to the axioms of the origami. Each
fold has a parity argument, which is “mountain” or “valley”, and is realized w.r.t. this
parity.

We write fold_name (args) → output to define a function. Then we describe the
behaviour of this function.

• fold_along (parity, line)→ unit : fold along line, return nothing
• fold_V toV (parity, point1, point2)→ line : fold point1 over point2, return the line

defined by the fold (the crease)
• fold_EtoE (parity, line1, line2)→ line : fold line1 over line2, return the crease.
• fold_ortho (parity, line, point)→ line′ : fold along the line which is orthogonal to
line and to which point belongs, return the crease

• fold_V toE (parity, point1, line, point2) → line′ : fold point1 over line, along line′
to which point2 belongs, return the crease

• fold_V V toEE (parity, point1, line1, point2, line2) → line : fold pointi over linei
for i ∈ {1, 2}, return the crease

• fold_V toEortho (parity, point, line1, line2) → line : fold point over line1, along
line which is orthogonal to line2, return the crease

Moreover, every folding function has an optional boolean argument, which says whether
or not the corresponding folding arrows must be generated automatically. By default, it
is set to true. It will be set to false when we want to define macros for more advanced
folds which require a different kind of arrow.

1



3 Fold updates
One may want to change some caracteristics of a fold. Thus, we need some “update”
functions to perform these modifications.

• reverse (line)→ unit : reverse the fold defined by line, return nothing

• unfold (line)→ unit : unfold along line, return nothing

4 Diagramming functions
The intermediate representation is used both to generate the 3D model of the origami,
and the final diagram. Thus, we need to add some diagram-specific functions.

• step(annotation) → unit : end of a diagram step. It genetates a new step on the
diagram, with an annotation. This corresponds to the “snapshot” button in the user
interface.

• show() → unit : display the current state of the 3D model in the GUI. This can
be done several times within one step. This function is used to specify that several
folds must be done simultaneously : some macros (e.g., squash fold) are composed
of several basic folds which cannot be done in a sequential manner without intersert-
ing surfaces. We want to avoid displaying such steps. All folding functions called
between two consecutive calls to show() are applied simultaneously.

• move_cam(θ, φ, ψ) → unit : move the camera relatively to the current position.
The arguments are Euler’s angles.

• reset_view()→ unit : reset the camera to its initial position.

• arrow_fold(point1, point2, type) → unit : draw an arrow from point1 to point2.
The type argument specifies the kind of arrow to be drawn.

• arrow_push(line)→ unit : Draw the arrow which corresponds to pushing the line.

• arrow_pull(line)→ unit : Draw the arrow which corresponds to pulling the line.

5 Defining new objects
During the creation of an origami, several new lines and points are created. In order to
be able to use them, we need some definition functions.

• assert_point(line, coef1, coef2)→ point : Define a new point given by its arbitrary
position on an existing line. This position is given as the barycenter of the extremities
of the line, with coefficients coef1 and coef2.

• intersect(line1, line2) → point : Defines a new point as the intersection of two
existing lines.

• def_line(point1, point2) → line : Defines a new line which has for extremities
point1 and point2.

2


